Lie discrete symmetries of lattice equations
نویسنده
چکیده
We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differentialdifference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlevé I equation and of the Toda lattice equation.
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملLie Symmetries of Difference Equations
The discrete heat equation is worked out in order to illustrate the search of symmetries of difference equations. It is paid an special attention to the Lie structure of these symmetries, as well as to their dependence on the derivative discretization. The case of q–symmetries for discrete equations in a q–lattice is also considered.
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملContinuous Symmetries of Difference Equations
Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalize...
متن کاملExact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries
In this paper Lie symmetry analysis is applied to find new solution for Fokker Plank equation of geometric Brownian motion. This analysis classifies the solution format of the Fokker Plank equation.
متن کامل